a2 United States Patent

Ungureanu et al.

US009129394B2

(10) Patent No.: US 9,129,394 B2

(54)

(71)
(72)

(73)

")
@
(22)

(65)

(1)

(52)

CPU-GPU PARALLELIZATION
Applicant: Microsoft, Redmond, WA (US)

Inventors: Oreste Dorin Ungureanu, Duvall, WA
(US); Harneet Sidhana, Seattle, WA
(US); Mohamed Sadek, Sammamish,
WA (US); Sandeep Prabhakar,
Redmond, WA (US); Steve Pronovost,
Woodinville, WA (US)

Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 325 days.

Appl. No.: 13/715,725

Filed: Dec. 14, 2012

Prior Publication Data
US 2014/0168229 Al Jun. 19, 2014

Int. Cl1.

GO6T 120 (2006.01)

GO6F 9/48 (2006.01)

GO6F 9/52 (2006.01)

U.S. CL

CPC ... GO6T 1/20 (2013.01); GO6F 9/4843

(2013.01); GOGF 9/52 (2013.01)

refresh signal

(45) Date of Patent: Sep. 8, 2015
(58) Field of Classification Search

CPC ... GO09G 5/12; G09G 5/395; GOGF 9/4843

USPC ittt 345/503-505

See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,310,494 B2* 112012 Hendryetal. 345/534
8,484,647 B2* 7/2013 Hendryetal. ... 718/102

* cited by examiner

Primary Examiner — Hau Nguyen
(74) Attorney, Agent, or Firm — John Jardine; Kate Drakos;
Micky Minhas

(57) ABSTRACT

Embodiments described herein relate to improving through-
put of a CPU and a GPU working in conjunction to render
graphics. Time frames for executing CPU and GPU work
units are synchronized with a refresh rate of a display. Pend-
ing CPU work is performed when a time frame starts (a vsync
occurs). When a prior GPU work unit is still executing on the
GPU, then a parallel mode is entered. In the parallel mode,
some GPU work and some CPU work is performed concur-
rently. When the parallel mode is exited, for example when
there is no CPU work to perform, the parallel mode may be
exited.

20 Claims, 8 Drawing Sheets

Check if in parallel mode

CrpgDm
block (wait) for signal |ﬂ
| start new frame |15'4‘
if already in check GPU to determine if 186
parallel mode prior GPU work unit is still
wait for last executing
queued GPU
work to
complete p :
GPL:D:Z': ::?:: M8 BPU not executing

prior frame

execute current CPU work unit to
generate current GPU work

188 if in parallel mode, exit 1%
parallel mode
If not in parallel mode
Enter parallel mode
192

U.S. Patent

Sep. 8, 2015 Sheet 1 of 8 US 9,129,394 B2

user interactions, events,
animations, video, etc.

o

| 0

[
=

storage CPU

—
(o]

GPU

DISPLAY

FIG. 1

U.S. Patent Sep. 8, 2015 Sheet 2 of 8 US 9,129,394 B2
100
120 120 120
app app app

window 122

manager
/

104 106
CPU » GPU
108
display

FIG. 2

U.S. Patent Sep. 8, 2015 Sheet 3 of 8 US 9,129,394 B2

refresh signal

(vsync) 140
142
—>> block (wait) for signal
144
start new frame
146

perform CPU work unit that
generates a GPU work unit

'

execute GPU work unit

[
N
(@e]

FIG. 3

U.S. Patent Sep. 8, 2015 Sheet 4 of 8 US 9,129,394 B2

time
16QA
execute GPU work
>
execute
CPU work 1661 1701
-
app work
1641
>

FIG. 4

U.S. Patent Sep. 8, 2015 Sheet 5 of 8 US 9,129,394 B2

time
_—
.
execute GPU work
-
execute
CPU work 1703\ :
-
app work
-

162

FIG. 5

U.S. Patent Sep. 8, 2015 Sheet 6 of 8 US 9,129,394 B2

refresh signal

(vsync) 180
: : 182
A Y > block (wait) for signal
start new frame 184
if already in check GPU to determine if 186
parallel mode prior GPU work unit is still
wait for last executing
gueued GPU
work to
complete GPU stil ti
p;c;r ﬁ:?n(:: g GPU not executing

prior frame

AN

if in parallel mode, exit| —
parallel mode

—
0o
oo
—
o

Check if in parallel mode

If not in parallel mode
Enter parallel mode

execute current CPU work unitto |—
generate current GPU work

FIG. 6

U.S. Patent Sep. 8, 2015 Sheet 7 of 8 US 9,129,394 B2

210 214 218
—
(VT (
212 I P
window manager \\ B
GPU work

\

window manager
CPU work

app work

FIG.7

U.S. Patent

Sep. 8, 2015

Sheet 8 of 8

US 9,129,394 B2

212
window manager
GPU work -
window manager
CPU work
>
app work
>

FIG. 8

US 9,129,394 B2

1
CPU-GPU PARALLELIZATION

BACKGROUND

Various types of software use a central processing unit
(CPU) in combination with a graphics processing unit (GPU)
to display graphics on a display. Examples of such software
are window managers, three-dimensional games, animation
software, application software, and others. Typically, events
such as user inputs or interactions with a user interface, ani-
mations, video playbacks, system events that require the dis-
play of information, or other events require both application-
level logical processing to determine, for example, what
objects may need to be displayed or moved, what object
portions have been hidden or exposed, textures to be ren-
dered, user interface elements to draw, and other logical
operations that, perhaps by way of an application program-
ming interface, generate code or instructions to be executed
on a GPU.

Various approaches have been used to improve the flow of
work between the CPU and the GPU and overall computa-
tional efficiency. For example, double buffering has been
used to improve speed and triple buffering has been used to
allow for some CPU-GPU concurrency. A technique referred
to as vsync (vertical synchronization), which synchronizes
graphics generation and painting with display refreshes, has
been used to avoid artifacts such as tearing. There remains a
need to improve overall throughput when the vsync approach
is used. Some previous approaches have improved overall
throughput but at the expense of artifacts such as skipped
frames or at the cost of increased hardware requirements,
which can be problematic for resource-constrained devices. It
would be beneficial if overall throughput could be improved
with the vsync technique without introducing unacceptable
lag (delay from event to corresponding display of graphics),
stuttering, or other undesirable side effects.

Techniques related to CPU-GPU parallelization are dis-
cussed below.

SUMMARY

The following summary is included only to introduce some
concepts discussed in the Detailed Description below. This
summary is not comprehensive and is not intended to delin-
eate the scope of the claimed subject matter, which is set forth
by the claims presented at the end.

Embodiments described herein relate to improving
throughput of a CPU and a GPU working in conjunction to
render graphics. Time frames for executing CPU and GPU
work units are synchronized with a refresh rate of a display.
Pending CPU work is performed when a time frame starts (a
vsync occurs). When a prior GPU work unit is still executing
on the GPU, then a parallel mode is entered. In the parallel
mode, some GPU work and some CPU work is performed
concurrently. When the parallel mode is exited, for example
when there is no CPU work to perform, the parallel mode may
be exited.

Many of the attendant features will be explained below
with reference to the following detailed description consid-
ered in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The present description will be better understood from the
following detailed description read in light of the accompa-
nying drawings, wherein like reference numerals are used to
designate like parts in the accompanying description.

40

45

60

2

FIG. 1 shows an example computing device.

FIG. 2 shows example software that may execute on CPU.

FIG. 3 shows a process where execution of CPU and GPU
work are synchronized with refreshes of a display.

FIG. 4 shows a diagram of a non-parallel vsync mode
where CPU work units and GPU work units are synchronized
with display refreshes.

FIG. 5 shows an example of when stutter, lag, or other
artifacts can occur in a non-parallel vsync mode.

FIG. 6 shows a process for dynamically alternating
between a non-parallel mode and a parallel mode.

FIG. 7 shows parallel execution of CPU work units and
GPU work units.

FIG. 8 shows behavior of another embodiment where GPU
work units begin executing mid-frame.

DETAILED DESCRIPTION

Embodiments discussed below relate to techniques for par-
allelizing execution of a CPU and a GPU. The following
description will begin with some examples hardware and
software contexts for implementing the techniques. Anexpla-
nation of some prior aspects of vsync-based rendering will be
described next, including non-parallel alternating CPU-GPU
execution. Techniques for allowing parallel CPU-GPU
execution are then discussed. Finally, the description will
cover details of switching between a parallel mode and a
non-parallel mode and some advantages thereof.

FIG. 1 shows an example computing device 100. The com-
puting device has storage 102, a CPU 104, a GPU 106, and a
display 108. The storage, described in more detail at the end,
stores instructions to execute rendering software of the type
mentioned in the Background, e.g., software that implements
virtual three-dimensional graphics, compositing window
managers, or any other graphics generating software. Various
graphics-driving events occur such as user manipulations of a
graphical user interface, the beginning of a virtual reality
simulation, rendering of video data by a decoder, user inter-
face animations, etc. As the graphics-driving events occur,
high level logic is executed on the CPU 104 (e.g., a window
manager updating its data structures), which in turn generates
code to be executed by the GPU 106 to generate correspond-
ing frame images to be displayed on the display 108.

FIG. 2 shows example software that may execute on CPU
104. Various applications 120 may be operated by a user.
Corresponding windowing and input events may be handled
by a window manager 122, which may, for example, perform
window compositing and other known functions.

FIG. 3 shows a process where execution of CPU and GPU
work is synchronized with refreshes of the display 108.
Although the vsync approach to rendering has been used
before and implementation details can be found elsewhere, a
brief description follows. At step 140 a refresh signal is peri-
odically received at a frequency corresponding to the refresh
rate of the display 108. The refresh rate may be constant or
may be varied according to a dynamic adaptation algorithm.
The application software or the like (e.g., a window man-
ager), at step 142, block-waits for the refresh signal. When a
refresh signal is received, a new processing frame is started at
step 144. This may involve determining if there is any queued
CPU work to be performed. An amount or unit of CPU work
may be dequeued and start executing, at step 146, onthe CPU.
This may involve any high level operations that determine, for
example, what objects to move, where to move them, what
objects have changed, what windowing data structures need
to be updated, and so forth. As the CPU work unit executes, it
generates a GPU work unit by issuing instructions or calls to

US 9,129,394 B2

3

a library, APL, graphics subsystem, or the like, which trans-
lates high level graphics calls or instructions to graphics code
that can be executed by the GPU; a GPU work unit. At step
148, when the CPU work unit is finished or suspended, in the
same processing frame the GPU work unit begins executing
on the GPU. If stutters are to be avoided and if the GPU-
rendered graphics (a frame image) are to be displayed with
minimal lag after the initiating event, the CPU work unit
finishes in the same processing frame and the resulting frame
image is displayed for the current refresh cycle.

FIG. 4 shows a diagram of a non-parallel vsync mode
where CPU work units and GPU work units are synchronized
with display refreshes. Time is shown as progressing from left
to right through a sequence of processing frames 160A, 1608,
and 106C. The frames 160A, 160B, 160C begin and end when
vsync signals 162 occur. Initially, starting in the lower left box
an application executing by the CPU performs some work
164. The work 164 generates a CPU work unit 166. The CPU
work unit 166 begins executing when the vsync signal 162 for
frame 160B occurs. As the CPU work unit 166 executes onthe
CPU it generates a GPU work unit 168 to be executed by the
GPU. Note that in this non-parallel mode the GPU work unit
168 begins executing after the CPU work unit 166 has com-
pleted. As used herein, non-parallel execution refers to the
non-parallel execution of (i) the CPU work that generates the
GPU work (e.g., via a graphics API or the like) and (ii) the
corresponding GPU work. In this non-parallel mode other
unrelated CPU work may be running in parallel with the GPU
work.

When frame 160B completes, new frame 160C starts,
executing the next CPU work unit 170, which generates the
next GPU work unit 174. Again, GPU executes the GPU work
unit 172 in the same frame 160C. This process of repeatedly
executing chunks of work in synchronization with refreshes
of the display continues as long as there is work to be done.
For example, the process many continue until a user interface
animation completes.

FIG. 5 shows an example of when stutter, lag, or other
artifacts can occur in a non-parallel vsync mode. In this
example, the GPU work unit 168 overruns its frame 160B. At
this point, either the GPU work unit 168 is ended before
completing when frame 160C starts, or the next CPU work
unit 170 is delayed; frame 160C is skipped and the CPU work
unit 170 starts executing at the start of frame 160D. If it
supposed that the CPU work units were initiated by a user
manipulation of a window, for example, then there may be a
delay between the user’s manipulation and a corresponding
graphical display. If an animation is being played, the anima-
tion may play smoothly.

FIG. 6 shows a process for dynamically alternating
between a non-parallel mode and a parallel mode. At step 180
arefresh or vsync signal occurs or is received. The application
code blocked at step 182 receives a refresh signal, event, etc.,
indicating the start of a new processing frame. Before, during,
or after executing the currently pending CPU work unit, the
GPU is checked to determine if the GPU is still executing a
prior GPU work unit. If the prior frame’s GPU unit is still
executing, then at step 188 the process checks whether it is
already in parallel mode. If not, then the process enters par-
allel mode and proceeds to step 192. If the process is in
parallel mode, then the process continues to step 182. If the
GPU is idle or not executing a prior frame’s GPU work, then
at step 190 the process either re-enters or stays in the non-
parallel mode. In an embodiment where step 186 is performed
at the beginning of the new frame, step 192 of executing the
current CPU work unit is executed on the CPU, which gen-
erates a new GPU work unit. At step 194 the timing of execu-

10

15

20

25

30

35

40

45

50

55

60

65

4

tion of the GPU work is determined according to whether the
process is in parallel mode. If the process is in parallel mode,
then at step 194 the newly generated GPU work unit is sched-
uled to execute on the GPU at the start of the next frame. Or,
in another embodiment shown in FIG. 8, the GPU work unit
can begin executing when the current GPU work unit finishes,
although such execution may still end at a next frame. As will
be explained below, if the generated GPU work completes in
a later frame then lag may be added (as will be the case when
GPU work units start at the beginning of a later or next frame).

To summarize, while in parallel mode, GPU work units
may execute in parallel with CPU work units while maintain-
ing synchronization with the refresh signal. Parallel mode
may be entered when pending or executing GPU work is
detected. Parallel mode may be exited when no CPU work is
pending (when the software that is handling the events is
idle).

FIG. 7 shows parallel execution of CPU work units and
GPU work units. At frame 210, while in non-parallel mode,
GPU work unit 212 starts executing but overruns the frame.
Because the GPU at the end of frame 210 has not finished
generating a new frame image, the display refresh when
frame 210 ends only redisplays the previous frame image; a
new frame is not displayed for frame 210 and the GPU work
unit 212’°s execution carries over into the next frame; frame
214. When frame 214 begins (or possibly later in frame 214)
it is determined that GPU work unit 212 is still executing,
which triggers entry into the parallel mode. The next CPU
work unit, CPU work unit 216, begins executing on the CPU
at the start of frame 214 in parallel with the execution of GPU
work unit 212 on the GPU. When the GPU work unit 212
completes in frame 214, a new frame image will have been
generated, which is displayed at the next refresh (when frame
214 ends). If there is a CPU work unit pending when frame
214 starts (or when frame 218 starts), then the process
remains in parallel mode. As long as the total time of execu-
tion of a CPU work unit and its corresponding GPU work unit
is greater than the time of a frame (vsync), then the process
should remain in parallel mode. If the total execution time of
a CPU work unit and its corresponding GPU work unit
exceeds the time of two frames, then artifacts will start to
occur.

While the checking for execution of prior GPU work can be
performed at the start of a new frame, such checking can be
performed at other stages of the new frame, for example,
when CPU work in the current frame finishes, during execu-
tion of the current CPU work (e.g., by atimer), or as otherwise
convenient for the implementation. In one embodiment, in
parallel mode, the GPU work units start at the beginning of
frames following the frames of their respective CPU work
units (see FIG. 7). FIG. 8 shows behavior of another embodi-
ment where GPU work units begin executing mid-frame, for
example, as soon as GPU work units are ready for processing.
This approach, which may require additional synchronization
logic and can in some cases reduce latency, increase overall
concurrency, or hasten the exit from parallel mode.

CONCLUSION

Embodiments and features discussed above can be realized
in the form of information stored in volatile or non-volatile
computer or device readable media. This is deemed to
exclude signals per se, and rather includes physical storage
media or devices such as optical storage (e.g., compact-disk
read-only memory (CD-ROM)), magnetic media, flash read-
only memory (ROM), random access memory (RAM), or
other non-signal physical means of storing digital informa-

US 9,129,394 B2

5

tion. The stored information can be in the form of machine
executable instructions (e.g., compiled executable binary
code), source code, bytecode, or any other information that
can be used to enable or configure computing devices to
perform the various embodiments discussed above. This is
also deemed to include at least volatile memory such as
random-access memory (RAM) and/or virtual memory stor-
ing information such as central processing unit (CPU)
instructions during execution of a program carrying out an
embodiment, as well as non-volatile media storing informa-
tion that allows a program or executable to be loaded and
executed. The embodiments and features can be performed on
any type of computing device, including portable devices,
workstations, servers, mobile wireless devices, and so on.

The invention claimed is:

1. A method of scheduling central processing unit (CPU)
work units and respective graphics processing unit (GPU)
work units, the method performed by a device comprising a
CPU, a GPU, and a display, the method comprising:

synchronizing starts of execution of the CPU work units to

refreshes of the display that occur at frame intervals
corresponding to a refresh rate of the display;

when starting a frame interval and starting execution of a

CPU work unit, determining whether a GPU work unit is
currently executing on the GPU;

when determined that a GPU work unit is currently execut-

ing on the GPU, if not in a parallel mode, entering the
parallel mode, the parallel mode comprising a mode that
causes GPU work units to begin executing in parallel
with CPU work units; and

when determined that a GPU work unit is not currently

executing on the GPU, determining whether operating in
the parallel mode, if operating in the parallel mode,
exiting the parallel mode such that the CPU and GPU are
unable to execute their respective work units concur-
rently.

2. A method according to claim 1, further comprising
executing in a non-parallel mode prior to entering the parallel
mode, the non-parallel mode such that CPU work units and
their respective GPU work units start executing at the begin-
ning of respective frame intervals.

3. A method according to claim 2, further comprising again
determining whether a GPU work unit is currently executing
on the GPU and when determined that a GPU work unit is not
currently executing on the GPU executing the parallel mode
and reentering the non-parallel mode.

4. A method according to claim 1, wherein entering the
parallel mode causes GPU work units generated by respective
CPU work units to begin executing in frame intervals that
follow the frame intervals in which the respective CPU work
units begin executing.

5. A method according to claim 4, further comprising exit-
ing the parallel mode such that GPU work units begin execut-
ing in the same frame intervals in which their corresponding
CPU work units execute.

6. A method according to claim 5, further comprising sig-
nalling a video subsystem each time the parallel mode is
entered and exited, the video subsystem changing how it
computes according to the signalling.

7. A method according to claim 1, wherein the CPU work
units begin executing in response to refresh signals from the
GPU, the refresh signals corresponding to refreshes of the
display.

8. A computing device comprising:

a central processing unit (CPU) to execute a sequence of

CPU work units including a first CPU work unit and a

10

15

20

25

30

35

40

45

50

55

60

6

second work unit that immediately follows the first CPU
work unit in the sequence of CPU work units;

a graphics processing unit (GPU) to execute a sequence of
GPU work units respectively corresponding to the CPU
work units, the GPU work units including a first GPU
work unit corresponding to the first CPU work unit and
a second GPU work unit corresponding to the second
CPU work unit;

a display on which graphics corresponding to the GPU
work units are displayed, the display displaying at a
refresh rate; and

storage storing instructions that when executed by the pro-
cessor will cause the CPU work units to begin executing
in sync with refreshes of the display at the refresh rate,
the instructions dynamically determine when to enter a
parallel mode and when to exit the parallel mode by:
determining, in association with executing a CPU work

unit, whether the GPU is executing a GPU work unit,
if determined that a GPU work unit is not executing and
if in the parallel mode, exiting the parallel mode,
if determined that a GPU work unit is executing and if
not in the parallel mode, entering the parallel mode,
wherein in the parallel mode CPU work units and GPU
work units execute concurrently and when not in the
parallel mode CPU work units do not execute concur-
rently with the GPU work units.

9. A computing device according to claim 8, wherein in the
parallel mode GPU work units start in vsync intervals that
follow respective vsync intervals in which they were gener-
ated by corresponding CPU work units.

10. A computing device according to claim 8, wherein the
instructions when executed operate in time frames that cor-
respond to the refresh rate such that each refresh of the display
has a respective time frame, and in each time frame: the CPU
executes a new CPU work unit that generates a new GPU
work unit.

11. A computing device according to claim 10, wherein the
instructions when executed not in the parallel mode cause the
new GPU work unit to begin executing in the time frame in
which it was generated.

12. A computing device according to claim 11, wherein the
instructions when executed not in the parallel mode cause the
new GPU work unit to begin executing in a time frame that
follows the time frame in which it was generated by the new
CPU work unit.

13. A computing device according to claim 12, wherein the
instructions when executed determine when to enter the par-
allel mode by determining whether a GPU work unit that
started in a previous time frame is still executing on the GPU.

14. A computing device according to claim 8, wherein the
instructions when executed exit the parallel mode when deter-
mined that there are no pending CPU work units to be
executed.

15. A computing device according to claim 8, wherein the
storage further stores instructions corresponding to a window
manager that performs compositing, the window manager
controlling when to enter and exit the parallel mode.

16. One or more computer-readable storage media,
wherein the storage media is not a signal, the storage media
storing information to enable a computing device to perform
a process, the process comprising:

executing CPU work units and respective GPU work units
on a CPU and a GPU respectively, the execution of the
GPU work units generating corresponding graphics on a
display;

US 9,129,394 B2
7

synchronizing starts of execution of the CPU work units to
refreshes of the display that occur at frame intervals
corresponding to a refresh rate of the display;

during a frame interval having a CPU work unit to be

executed therein, determining whether a GPU work unit 5
is currently executing on the GPU;
when determined that a GPU work unit is currently execut-
ing on the GPU, entering a parallel mode, wherein when
in the parallel mode GPU work units are allowed execute
in parallel with CPU work units, and when not in the 10
parallel mode GPU work units are not allowed to execute
in parallel with CPU work units;

when determined that a GPU work unit is not currently
executing on the GPU, exiting the Parallel mode if in the
parallel mode. 15

17. One or more computer-readable storage media accord-
ing to claim 16, wherein the dynamically determining com-
prises determining that there are no CPU work units to be
executed.

18. One or more computer-readable storage media accord- 20
ing to claim 16, wherein entering the parallel mode increases
a latency between display of graphics and a corresponding
event that initiated the display of the graphics, and exiting the
parallel mode reduces the latency.

19. One or more computer-readable storage media accord- 25
ing to claim 16, storing further information to execute a
compositing window manager that performs the process.

20. One or more computer-readable storage media accord-
ing to claim 16, wherein the determining whether a GPU
work unit is currently executing on the GPU is performed at 30
the beginning of a frame interval.

#* #* #* #* #*

